photovoltaic

Per energia solare si intende l'energia, termica o elettrica, prodotta sfruttando direttamente l'energia irraggiata dal Sole verso la Terra. Ogni momento il Sole trasmette sull'orbita terrestre 1367 watt per m². Tenendo conto del fatto che la Terra è una sfera che oltretutto ruota, l'irraggiamento solare medio è, alle latitudini europee di circa 200 watt/m². Moltiplicando questa potenza media per metro quadro per la superficie dell'emisfero terrestre istante per istante esposto al sole si ottiene una potenza maggiore di 50 milioni di Gw. (un Gw è l'energia prodotta a pieno regime da una grande centrale elettrica a gasolio o nucleare che sia). La quantità di energia solare che arriva sul suolo terrestre è quindi enorme, circa diecimila volte superiore a tutta l'energia usata dall'umanità nel suo complesso.

L'effetto fotovoltaico si realizza quando un elettrone presente nella banda di valenza di un materiale (generalmente semiconduttore) passa alla banda di conduzione a causa dell'assorbimento di un fotone sufficientemente energetico incidente sul materiale. Quando una radiazione elettromagnetica investe un materiale può, in certe condizioni, cedere energia agli elettroni più esterni degli atomi del materiale e, se questa è sufficiente, l'elettrone risulta libero di allontanarsi dall'atomo di origine. L'assenza dell'elettrone viene chiamata in questo caso lacuna. L'energia minima necessaria all'elettrone per allontanarsi dall'atomo (passare quindi dalla banda di valenza che corrisponde allo stato legato più esterno alla banda di conduzione ove non è più legato) deve essere superiore alla banda proibita del materiale.

 



L'utilizzo nelle celle fotovoltaiche
Questo fenomeno viene usualmente utilizzato nella produzione elettrica nelle celle fotovoltaiche. Il meccanismo di funzionamento si basa sull'utilizzo di materiali semiconduttori. Infatti, nel caso di materiali isolanti, il band gap risulta troppo elevato per poter essere eguagliato dall'energia del fotone incidente, mentre per i materiali conduttori l'energia del band gap è piccolissima, quindi a temperatura ambiente c'è una continua creazione e distruzione di coppie elettrone-lacuna e l'energia necessaria alla creazione viene fornita direttamente dalle fluttuazioni termiche. Quando un flusso luminoso investe invece il reticolo cristallino di un semiconduttore, si verifica la transizione in banda di conduzione di un certo numero di elettroni al quale corrisponde un egual numero di lacune che passa in banda di valenza.
Si rendono pertanto disponibili portatori di carica, che possono essere sfruttati per generare una corrente. Per realizzare ciò è necessario creare un campo elettrico interno alla cella, stabilendo un eccesso di atomi caricati negativamente (anioni) in una parte del semiconduttore ed un eccesso di atomi caricati positivamente (cationi) nell’altro. Questo meccanismo si ottiene mediante drogaggio del semiconduttore che generalmente viene realizzato inserendo atomi del terzo gruppo come ad esempio il boro e del quinto gruppo (fosforo) per ottenere rispettivamente una struttura di tipo p (con un eccesso di lacune) ed una di tipo n (con un eccesso di elettroni). Lo strato drogato con elementi del quinto gruppo, che hanno cinque elettroni esterni (o di valenza) contro i tre di quelli del terzo gruppo, presenta una carica negativa debolmente legata, costituita da un elettrone in eccesso per ogni atomo drogante. Nello stesso modo, nello strato drogato con elementi del terzo gruppo, che hanno invece tre elettroni esterni, si ottiene un eccesso di carica positiva, data dalle lacune degli atomi droganti. Il primo strato, a carica negativa, viene generalmente chiamato strato n, l'altro, a carica positiva, strato p, la zona di separazione è detta giunzione p-n.

È evidente quindi che il materiale risulta essere globalmente neutro, però, mettendo a contatto i due materiali così ottenuti, si viene a verificare un flusso di elettroni dalla zona n alla zona p e di lacune in direzione opposta, fino al raggiungimento dell'equilibrio elettrostatico, che determina un eccesso di carica positiva nella zona n, un eccesso di elettroni nella zona p e una regione intermedia detta regione di svuotamento (in inglese depletion region). Il risultato è un campo elettrico interno al dispositivo (detto campo elettrico di built-in) che si estende a cavallo della regione di svuotamento, generalmente spessa pochi micrometri. A questo punto, se viene illuminata con fotoni la giunzione dalla parte n, vengono a crearsi delle coppie elettrone-lacuna sia nella zona n che nella zona p. Il campo elettrico di built-in permette di dividere gli elettroni in eccesso (ottenuti dall’assorbimento dei fotoni da parte del materiale) dalle lacune, e li spinge in direzioni opposte gli uni rispetto agli altri. Gli elettroni, una volta oltrepassata la zona di svuotamento non possono quindi più tornare indietro, perché il campo impedisce loro di invertire la marcia. Connettendo la giunzione con un conduttore esterno, si otterrà un circuito chiuso nel quale il flusso di elettroni parte dallo strato n, a potenziale maggiore, verso lo strato p, a potenziale minore sin tanto che la cella resta esposta alla luce.

 



Cella fotovoltaica
La cella fotovoltaica è l'elemento base nella costruzione di un modulo fotovoltaico, ma può venire anche impiegata singolarmente in usi specifici. La versione più diffusa di cella fotovoltaica, quella in materiale cristallino, è costituita da una lamina di materiale semiconduttore, il più diffuso dei quali è il silicio, e si presenta in genere di colore nero o blu e con dimensioni variabili dai 4 ai 6 pollici.

Piccoli esemplari di celle fotovoltaiche in materiale amorfo sono in grado di alimentare autonomamente dispositivi elettronici di consumo, quali calcolatrici, orologi e simili. Analogamente al modulo, il rendimento della cella fotovoltaica si ottiene valutando il rapporto tra l'energia prodotta dalla cella e l'energia luminosa che investe l'intera sua superficie.

 



Inverter fotovoltaici per immissione in rete
Si tratta di un tipo particolare di inverter progettato espressamente per convertire l'energia elettrica sotto forma di corrente continua prodotta da modulo fotovoltaico, in corrente alternata da immettere direttamente nella rete elettrica. Queste macchine estendono la funzione base di un inverter generico con funzioni estremamente sofisticate e all'avanguardia, mediante l'impiego di particolari sistemi di controllo software e hardware che consentono di estrarre dai pannelli solari, la massima potenza disponibile in qualsiasi condizione meteorologica. Questa funzione prende il nome di MPPT, un acronimo di origine Inglese che sta per Maximum Power Point Tracker. I moduli fotovoltaici infatti, hanno una curva caratteristica V/I tale che esiste un punto di lavoro ottimale, detto appunto Maximum Power Point, dove è possibile estrarre tutta la potenza disponibile. Questo punto della caratteristica varia continuamente in funzione del livello di radiazione solare che colpisce la superficie delle celle. È evidente che un inverter in grado di restare "agganciato" a questo punto, otterrà sempre la massima potenza disponibile in qualsiasi condizione.
Un'altra caratteristica importante di un inverter fotovoltaico, è l'interfaccia di rete. Questa funzione, generalmente integrata nella macchina, deve rispondere ai requisiti imposti dalle normative dei diversi enti di erogazione di energia elettrica. In Italia, ENEL ha rilasciato la normativa DK5940, attualmente giunta all'edizione 2.2. Questa normativa prevede una serie di misure di sicurezza tali da evitare l'immissione di energia nella rete elettrica qualora i parametri di questa, siano fuori dai limiti di accettabilità.

23/07/2013
Fino al 31 dicembre 2013 c'è la possibilità per le persone fisiche di realizzare un impi...
05/06/2013
The Commission will introduce tariffs in two phases, starting with a rate of 11, 8 per cen...
15/04/2013
Il contatore del GSE riporta oggi un costo annuo cumulato di 6.572.625.401......
14/12/2012
L’associazione Gruppo Imprese Fotovoltaiche Italiane (GIFI) ha sollecitato le istituzion...